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Abstract

Coupling based normalizing flows build flexible invertible functions by using half1

of an input to parametrize a bijective transformation on the second half. While in2

theory any normalizing flow layer can be used with coupling, such as invertible3

convolutions, the most successful coupling based flows only act elementwise on an4

input. This is because invertible convolutions cannot be parametrized as well as the5

elementwise functions can, nor can they be inverted as efficiently. We propose PAC6

flows, normalizing flows for images which use a new type of invertible layer based7

on pixel adaptive convolutions (PAC). In PAC flows, the pixel adaptive convolutions8

weight a convolutional filter differently at every pixel. This construction uses a9

comparable number of parameters as other methods and can be inverted quickly10

using a globally convergent iterative method. We demonstrate that PAC flows are11

well suited for coupling based flows, can be inverted efficiently and improve the12

performance of invertible convolutions. Our experiments demonstrate that PAC13

flows reduce the bits/dimension1 achieved by equivalent normalizing flows with14

invertible standard convolutions on CIFAR-10 from 3.43 to 3.33.15

1 Introduction16

Normalizing flows have been shown to produce high-quality generative models and are useful for17

ML tasks such as density estimation (Papamakarios et al. [2019], Chen et al. [2020], Durkan et al.18

[2019], Kingma and Dhariwal [2018], Dinh et al. [2017], Ho et al. [2019]). Introducing invertible19

convolutions in normalizing flows has the potential to further improve these generative models, given20

the widespread success of convolutions in other neural network architectures. However, thus far,21

normalizing flows with invertible convolutions have been limited in their representational capacity22

because transformations in normalizing flows must preserve the dimensionality of their inputs. This23

means that an input with C channels can only be transformed with a convolution with exactly C24

filters. This limits flexibility compared to standard convolutions that can increase the number of25

channels its input has in order to apply more filters. To address this shortcoming, we introduce pixel26

adaptive convolutions (PAC) in normalizing flows – which we will hence call PAC flows.27

The main advantage that PAC flows has over existing invertible convolutions is the ability to learn28

a different filter for each location using coupling (see Fig.1). Coupling flows typically use simple29

invertible functions that are parametrized by one half of an input to modify the second half. Although30

any flow layer can be used with coupling, the most successful ones use elementwise functions31

(Durkan et al. [2019], Ho et al. [2019], Huang et al. [2018], Chen et al. [2020]). We hypothesize that32

the reason elementwise coupling outperforms existing invertible convolutions is that elementwise33

coupling applies a different function to each element while invertible convolutions apply the same34

1Bits/dimension is a measure of data fit similar to negative log likelihood – the lower it is, the better the fit.
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(a) Elementwise functions with
spatially dependent parameters.

(b) Convolution with shared pa-
rameters.

(c) Convolution with spatially de-
pendent parameters.

Figure 1: Coupling flows work well when their transformer can be adapted for every element of
an input. This makes elementwise transformations (Fig.1a) a good fit. Convolutions on the other
hand slide the same transformation across an input (Fig.1b). PAC flows are suited for coupling flows
because they use pixel adaptive convolutions (Fig.1c) that apply a different filter to every location of
the input. In the figures, each color represents a different function and the colored squares cover the
pixels the function uses.

function. Ultimately the use of spatially varying convolutions allows for an increased representational35

capacity.36

Our implementation of PAC flows is parameter efficient, tractable in the context of normalizing37

flows through the use of the PLU decomposition and easily inverted using a globally convergent38

iterative method. In our experiments we compare how elementwise affine transformations, invertible39

convolutions, and pixel adaptive convolutions perform under the same parameter budget. We find40

that the use of pixel adaptive convolutions provides a significant improvement in density estimation41

over comparable models. Furthermore, we demonstrate that PAC flows can be inverted quickly. In42

summary, our main contribution is the demonstration that pixel adaptive convolutions are well suited43

for coupling normalizing flows.44

2 Related Work45

Although there are variants of invertible convolutions, there does not exist a convolutional flow46

that can be parametrized as effectively as elementwise functions in coupling based normalizing47

flows. There are numerous elementwise coupling flows. The first popular coupling layers used affine48

transformations to achieve good performance on image generation tasks (Dinh et al. [2015, 2017]).49

Since then, more complex functions have been proposed to increase the capabilities of coupling based50

flows. Two popular functions are a mixture of logistic cumulative distribution functions used by Ho51

et al. [2019] and splines by Durkan et al. [2019]. The only condition elementwise functions must52

satisfy is that they need to be monotonic. Under this condition, they can always be inverted using53

1d root finders such as the bisection method and the log Jacobian determinant is equal to the sum54

of the log derivatives. Our method is designed to get the best of elementwise coupling while using55

invertible convolutions and is in fact strictly more general than elementwise multiplication.56

A tractable type of invertible convolutions is based on circular and symmetric convolutions. These57

kinds of convolutions can be computed an inverted in O(N log(N)) time using an FFT and the log58

Jacobian determinant can be computed just as quickly. Finzi et al. use these convolutions as stand59

alone layers in an invertible convolutional neural network in conjunction with a smooth leaky ReLU60

bijection and nearest neighbor downsampling. Their method did not use coupling and showed that61

their architecture is not as suitable for generative modeling as existing architectures. Karami et al.62

[2019] also used circular convolutions, but with coupling. In particular, their conditioner network63

learns a single convolutional filter that is applied to an input. The authors mention that adding an64

elementwise multiplication after their filter results in a filtering scheme that varies over space and65

frequency, but this only varies the filters up to a scalar while our method uses almost entirely different66

filters at every spatial location.67

Another kind of invertible convolution exploits triangular structure. Triangular matrices work well68

in normalizing flows because they can be inverted quickly using forward or backward substitution69

and their log Jacobian determinant is given by the sum of the log absolute values of the diagonal70
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elements Papamakarios et al. [2019]. Zheng et al. [2018] also used autoregressive convolutions, but71

for 1D inputs and within a planar flow. Ma et al. [2019] uses masked convolutions to parametrize an72

elementwise shift and scale to transform an input rather than as an invertible convolutions.73

The most similar prior work to ours is emerging convolutions (Hoogeboom et al. [2019]). Emerging74

convolutions compose autoregressive convolutions to yield a transformation with the same receptive75

field as a standard convolution. Our implementation of PAC flows can be seen as an improvement of76

emerging convolutions by using pixel adaptive convolutions and two other enhancements. The first is77

the use of locally masked convolutions (Jain et al. [2020]) which allows the use of any autoregressive78

order and the second is the use of the weighted Jacobi method (Saad [2003]) for inversion instead of79

forward/backward substitution. As we will show, these boost performance considerably.80

The least constrained kind of invertible convolution is the convolution exponential (Hoogeboom et al.81

[2020]). This method applies the matrix exponential of a convolution to inputs using the Taylor series82

expansion of the matrix exponential. Furthermore, the inverse can be found as quickly as the forward83

pass and log Jacobian determinant is trivial to compute. The main drawback of this method is that it84

requires computing multiple terms of the Taylor series expansion. Nevertheless, the authors report85

good performance in practice. Although PAC flows could be implemented with the convolution86

exponential instead of emerging convolutions, we choose to use emerging convolutions for simplicity.87

3 Background88

3.1 Normalizing Flows89

Normalizing flows (Rezende and Mohamed [2015], Papamakarios et al. [2019]) use bijective functions90

to transform random variables from a simple base distribution to a learnable target distribution. The91

probability density of a data point under the model is known in closed form through the change of92

variables formula. Consider a data point x ∈ RN , a bijective function f and a base density pz(z). If93

we compute z = f(x), then the log likelihood of x under this model is given by:94

log px(x) = log pz(z) + log |dz
dx
| (1)

To sample from this model, we sample z ∼ pz(z) and compute x = f−1(z). In order to use a95

normalizing flow for density estimation and generative modeling, f must be constructed so that96

f−1(z) and log |df(x)dx | are easy to compute. A simple way to construct such an f is by using coupling.97

3.2 Coupling based normalizing flows98

Coupling splits an input into two parts and uses the first part to parametrize a simple bijective99

transformation of the second part. The bijection, τ , is called the transformer and the unconstrained100

network that generates its parameters, θ, is called the conditioner 2 (Papamakarios et al. [2019]).101

Given an input x, coupling splits x into [x1, x2] and computes z = [x1, τ(x2; θ(x1))]. This can be102

inverted by splitting z and computing x = [z1, τ
−1(z2; θ(z1))] and the Jacobian determinant of the103

full transformation is equal to |dτ(x2;θ(x1))
dx2

|.104

The ability to condition τ on x1 is what makes coupling based methods so powerful despite often only105

using elementwise transformations. Although invertible convolutions exist, they currently cannot be106

parameterized as effectively as elementwise transformations can.107

4 Method108

We introduce PAC flows, an invertible pixel adaptive convolution. In this section we introduce pixel109

adaptive convolutions, explain how to ensure invertibility through the PLU decomposition and give a110

globally convergent iterative method. In Appendix B we provide an implementation of PAC flows in111

NumPy (Harris et al. [2020]).112

2Papamakarios et al. [2019] uses c to denote the conditioner.
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4.1 Pixel adaptive convolutions113

Pixel adaptive convolutions (PAC) (Su et al. [2019]) multiply a convolutional filter, W ∈114

RKx×Ky×Cin×Cout , with a kernel, k ∈ RH×W×Cout×Kx×Ky . This composition is then multipled115

with input image x. Before introducing PAC, we first define Ψ(x) ∈ RH×W×Cin×Kx×Ky to be the116

operation that extracts a (Kx,Ky) patch of x at every spatial location. Intuitively, Ψ(x) extracts the117

patches that the convolutional filter will be applied to. Matrix multiplying Ψ(x) and W is equivalent118

to the convolution W ∗ x.119

Ψ(x)hwiuv
∆
= x(h+u−padx),(w+v−pady),i (2)

(W ∗ x)hwo =
∑
i,u,v

Ψ(x)hwiuvWuvio (3)

With this notation, a pixel adaptive convolution is computed as:120

PAC(W,k, x)hwo =
∑
i,u,v

Ψ(x)hwiuvkhwouvWuvio (4)

We construct the kernel by evaluating a squared exponential kernel, whose parameters vary for every121

output dimension, over feature vectors within a spatially varying patch. The algorithm takes as input122

f ∈ RH×W×F , σ2 ∈ RH×W×C and l ∈ RH×W×C and computes123

khwouv = K(fhw:,Ψ(fhw:uv);σ
2
hwo, lhwo) (5)

= σ2
hwo exp

Ç
−
∑F
d=0(fhwd −Ψ(f)hwduv)

2

2lhwo

å
(6)

F is the feature dimension set by the user. Although the kernel will always weight the center pixel of124

the filter the most, the model can learn to compensate for this by weighting the center pixels of W125

less. When PAC is used in a coupling flow, f , σ2 and l are provided as the output of our conditioner126

network θ : RH×W×C → RH×W×(F+2C) and W is a learned parameter.127

4.2 Emerging PAC128

We make pixel adaptive convolutions tractable in normalizing flows by composing two autoregressive129

PACs. We chain together a PAC with upper triangular structure, U , with a lower triangular PAC130

with a unit diagonal, L, so that the result is equivalent to using a PLU decomposition (with a fixed131

permutation matrix P ). The log Jacobian determinant is computed as log |PLU | = log
∑
i |Uii| and132

can be efficiently inverted because L and U are triangular. This makes our implementation of PAC an133

improvement on emerging convolutions (Hoogeboom et al. [2019]). Emerging convolutions chain134

together two regular autoregressive convolutions instead of pixel adaptive convolutions. We use a135

globally convergent iterative method for inversion instead of forward/backward substitution.136

The system LUx = b can be solved quickly because L and U are triangular. Although we can solve137

Ly = b and Ux = y exactly using forward and backward substitution, this will take O((HWC)2)138

operations which can be expensive for large images. Instead, we use the weighted Jacobi method139

(Saad [2003]) to solve Ly = b and Ux = y. Consider the linear system Ax = b where A is triangular.140

The weighted Jacobi method iterates the following fixed point iteration until convergence:141

x(t+1) = x(t) − αdiag(A)−1(Ax(t) − b) (7)

For α ∈ (0, 2), Eq.7 will always converge to the solution x = A−1b whenA is triangular. We provide142

a proof in Appendix A. Although the method can fail if A is ill conditioned (Huckle [2019]), we143

observe in our experiments that it seems to always converge after a bit of training or good initialization.144

The weighted Jacobi method for triangular matrices is a special the fixed point algorithm introduced145

by Song et al. [2019], however in the general case their algorithm is only locally convergent. In our146

experiments we use α = 1.147
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4.3 Locally masked PAC148

We ensure that a PAC is triangular using the masking scheme from Jain et al. [2020]. Locally masked149

convolutions provide a simple way to impose any autoregressive ordering on an input. Consider a150

matrix defining an order over locations, O ∈ NH×W
1 , whose entries contain unique integers that are151

greater than or equal to 1. We can construct a per-location patch mask, M ∈ [0, 1]H×W×Kx×Ky ,152

that helps ensure upper triangular structure:153

Mhwuv = Ψ(O)hwuv ≥ Ohw (8)

M is multiplied into the patches form of a convolution in order to ensure that the convolutional filters154

are multiplied to every patch in an autoregressive manner. Using M and a simple upper triangular155

matrix M̂io = i ≥ o over the channels, we can construct a PAC with upper triangular structure:156

Upper-PAC(W,k,M, x)hwo =
∑
i,u,v

Ψ(x)hwiuvkhwouvWuvio︸ ︷︷ ︸
Original summand

MhwuvM̂io︸ ︷︷ ︸
Per-location patch mask

(9)

Upper-PAC(W,k, x) completes the y = Ux multiplication in the PLU decomposition matrix-vector157

product. The remaining matrix-vector product z = Ly requires that L is lower triangular with a158

unit diagonal. This is trivially achieved by logically negating M to ensure strictly lower triangular159

structure and adding the input for the unit diagonal:160

Lower-PAC(W,k,M, y)hwo = y +
∑
i,u,v

Ψ(y)hwiuvkhwouvWuvio ¬(MhwuvM̂io)︸ ︷︷ ︸
Logical negation of mask

(10)

4.4 PAC Flows161

The crux of PAC flows is the introduction of invertible transformations that use emerging pixel162

adaptive convolutions. PAC flows use an arbitrary order over the input to construct an autoregressive163

per-location patch mask to impose upper or lower triangular structure. Fig.2 provides a visual164

summary of how PAC flows generate an output. The full algorithm is presented in Algorithm 1 and a165

NumPy Harris et al. [2020] implementation is given in Appendix B.166

Algorithm 1 PAC Flows

1: Input W,O, x, θ(.)

2: // Split the input
3: (x1, x2)← x

4: // Compute the kernel parameters
5: f, σ2, l← θ(x2)

6: // Compute the kernel
7: k ← K(f,Ψ(f);σ2, l)

8: // Get the mask
9: M ← Ψ(O) ≥ O

10: // y=Ux
11: y ← UpperPAC(W,k,M, x1)

12: // z=LUx
13: z1 ← LowerPAC(W,k,M, y)

14: // Sum over the diagonal
15: logdet =

∑
hwc log |kh,w,c,p,pWp,p,c,c|

16: // Combine the output
17: z ← (z1, x2)
18: return z, logdet

PAC flows have fewer parameters than popu-167

lar elementwise coupling transformations such168

as neural splines Durkan et al. [2019] and lo-169

gistic CDF mixtures Ho et al. [2019]. From170

section 4.1, we need the parameters f , σ2 and l171

to contains the parameters that PAC flows need:172

(f, σ2, l) ∈ RH×W×(2C+F ). Table 1 compares173

the number of parameters needed to parametrize174

a spatial location of PAC flows to the number175

needed by RealNVP, logistic CDF mixtures and176

neural splines. Our method uses far fewer pa-177

rameters than logistic CDF mixtures and neural178

splines. In all of our experiments we set the179

kernel size to 5.180

5 Experiments181

Our experiments investigate how pixel adaptive182

convolutions fare against standard convolutions183

and linear layers. We evaluate three models on184

the CIFAR-10 Krizhevsky [2009] and downsam-185

pled ImageNet dataset Chrabaszcz et al. [2017]186

at 32x32 and 64x64 resolutions. All of our code187

is written using the JAX Bradbury et al. [2018]188

python library. Each model was trained on either189

one Nvidia 1080Ti or 2080Ti GPU.190

5



θ(x2)
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Figure 2: A visual summary of Upper-PAC from Eq.9. Each output pixel is computed as the
dot product of an input patch, location dependent filter, convolutional filter and autoregressive
mask. Lower-PAC is identical except that its mask is logically negated. PAC flows is the composition
of Lower-PAC and Upper-PAC. See algorithm 1 for a summary of the algorithm and Appendix B for
a Python implementation.

RealNVP Flow++ Neural Spline PAC Flow
Parameters per pixel 2C 3KC (3K-1)C 2C + K
Ratio with RealNVP (C=3,K=32) 1.0 48.0 47.5 6.3

Table 1: Comparison of the number of parameters used to transform feature vector at a spatial
location of an image between popular elementwise flows and PAC Flow. RealNVP learns a shift/scale
parameter for every element in the image, Flow++ learns K logistic cdf mixtures with 3 parameters
each for every element and Neural Splines use K spline knots with up to 3 parameters each for every
element. PAC flow learns a lengthscale and variance to parametrize the kernel function at every
element and applies each kernel to a K dimensional feature vector for every spatial location (see
section 4.1). As a result, PAC flows has minimal parameter overhead compared to lightweight flows
such as RealNVP.

5.1 Architecture191

Our architecture is similar to the one used in Chen et al. [2020] - we use a coupling network with192

variational dequantization Ho et al. [2019] and channel padding, 3 checkerboard and 3 channel193

coupling layers at the full spatial scale, then halve the spatial dimensions and quadruple the channel194

dimension and then another use another 3 checkerboard and 3 channel coupling layers. Our model195

differs from Chen et al. [2020] mainly in the transformer we use in the coupling layers and in our196

implementation of variational dequantization and padding. Below, we provide more details on each197

component of the network, in appendix C.1 we share the nonlinearities we used and how they helped198

initialization, and in appendix C.4 we have a full outline of the architecture.199

Conditioner networks All of the conditioner networks are residual networks (He et al. [2016])200

with 12 residual blocks that contain a gated convolution and layer normalization (Xu et al. [2019]),201

similar to the architecture of Ho et al. [2019]. Additionally, we increased the number of channels of202

the input to 32 with a 1x1 convolution before passing it to the resnet. We did this because we found203

that it worked well during our early experiments.204

Transformer flows The transformer 3 flow that we use throughout our models is shown in Fig.3.205

It passes an input through a linear transformation (depending on the model type) with a learnable206

bias, a logistic CDF mixture (Ho et al. [2019]) nonlinearity and logit, another linear layer and then207

an S-Log gate (Karami et al. [2019]). We chose this architecture to resemble the architecture from208

Karami et al. [2019]. The addition of the S-Log gate in particular seemed to noticeably speed up209

training. The parameters of the transformer are generated using a conditioner network.210

3This does not refer to the transformer model Vaswani et al. [2017] but instead the flow used in coupling (see
Sec.3.2).
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S-LogLog. CDF Mix.x z

θ

Logit LinearAffine

Figure 3: Architecture of the transformer flow for our experiments. The models we test in our
experiments mainly differ in the affine and linear layer. The affine layer is the same as the linear layer,
except with an extra elementwise addition. The RealNVP, emerging conv. and PAC flow models
use elementwise multiplication, an emerging convolution + elementwise multiplication, and a pixel
adaptive convolution respectively for their linear layers. We ensure each model has the same number
of parameters only by altering the number of mixture components in the logistic cdf mixture layer.

Linear layers We compare three different linear transformations: PAC, a convolution followed by211

a elementwise multiplication, and elementwise multiplication. The experiments with elementwise212

multiplication are denoted with RealNVP because the RealNVP paper (Dinh et al. [2017]) used213

elementwise shift and scaling.214

The convolutions without the pixel adaptive component are implemented exactly the same as PAC,215

but do not multiply in the kernel when evaluating Eq.9 and Eq.10. We refer to this model as emerging216

conv. because it is most similar to the method from the paper Hoogeboom et al. [2019]. We also add217

an elementwise multiplication after the convolution to compare against the combined convolutional218

flow from Sec.(3.3) of Karami et al. [2019] which claims that elementwise multiplication can be used219

to achieve a location dependent filtering scheme. We note that in this case the filters only differ by a220

scalar value where as our method yields more variation.221

Finally, our method is PAC flows. The feature dimension for all of the experiments was set to 16. We222

test two different autoregressive orderings - a raster order and s-curve order. Jain et al. [2020] found223

that using multiple s-curve orders performed the best, but in our experiment we use just one.224

To make the comparisons fair, we use the exact same conditioner architectures for all of the networks225

and vary the number of mixture components to ensure that the models have a similar parameter226

count. The models for over the CIFAR-10 and downsampled ImageNet at a 32x32 resolution have227

4.6 million parameters and the models for the downsampled ImageNet dataset at 64x64 resolution228

have 5.2 million parameters. This was achieved by using 5, 10 and 16 mixture components for the229

PAC flow, Emerging Conv. and RealNVP models respectively.230

Main flow layer Our main flow layer consists of a coupling layer that uses the conditioner and231

transformer networks described above, followed by a 1x1 convolution and act norm (Kingma and232

Dhariwal [2018]). Similar to Ho et al. [2019] and Chen et al. [2020], we use both checkerboard and233

channel splitting (Dinh et al. [2017]).234

Fused variational dequantization and channel padding We implemented variational dequan-235

tization and channel padding together. Flow architectures typically begin with a dequantization236

SurVAE flow (Nielsen et al. [2020]) to map an image from x ∈ [0, 255]H×W×C to the reals using the237

stochastic right inverse of the floor function, q(z|x). Additionally, it has been shown that increasing238

the dimensionality of an input or adding a stochastic component to a flow can help bypass some239

topological limitations that bijective functions suffer from and increase performance (Cornish et al.240

[2019], Huang et al. [2020], Chen et al. [2020], Dupont et al. [2019]), so we do this too. q(z|x) is241

implemented using 4 of our main flow layers with checkerboard splits. The output z ∈ RH×W×2C is242

split for use in dequantization and padding tensor. First, dequantization is applied to the input image243

using the first half of z and then the result is rescaled and passed through a scaled logit as described244

by Dinh et al. [2017]. Then the result is concatenated with the second part of z.245

Training We trained all of the models with a batch size of 8 with the AdaBelief (Zhuang et al.246

[2020]) optimizer with a learning rate of 10−3. We took 2000 gradient steps to warm up the learning247

rate and used a cosine decay schedule over 100,000 gradient steps to drop the rate to 10−4. The248

gradients were clipped to a max norm of 15.0. The models were trained for 600,000 gradient steps.249

We used data dependent initialization with an initial batch size of 128 and initialized our flow to250
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a noisy identity where possible. In the appendix we describe some extra steps we took to avoid251

numerical instabilities.252

5.2 Comparison with PAC Flows253

CIFAR-10 ImageNet 64x64 ImageNet 32x32

RealNVP 3.412870 3.652563 3.935588
Emerging Conv. 3.431914 3.625504 3.936859
PAC raster (ours) 3.336659 3.598069 3.888512
PAC s-curve (ours) 3.339258 3.590702 3.877298

Table 2: Comparison of PAC flow against comparable flows on various datasets, lower is better.
RealNVP, Emerging Conv. and PAC share the same architecture but with some modifications to
the linear layer. RealNVP uses an elementwise transformation instead of convolution, Emerging
Conv. uses a convolution without pixel adaptation in addition to an elementwise multiplication and
PAC flow is our full model. The RealNVP and Emerging Conv. models were given more mixture
components in order to ensure the number of parameters each model used was the same (see Sec.5.1).

The results of our experiments show that PAC flows outperform the emerging convolution and254

RealNVP model by a noticeable margin on all three datasets. Table 2 contains the bits per dimension255

of the models on the test set of each dataset. The PAC models are able to achieve around 0.05 bits256

per dimension lower than the other models on average. Fig.4 shows the training and test losses257

during training and we see that PAC flows achieve a smaller loss consistently throughout training.258

Surprisingly, we find that the s-curve order does not perform any differently from the raster order and259

the emerging convolution performs only marginally better than the RealNVP model.260

0 105 2×105 3×105 4×105 5×105 6×105

Gradient Steps

3.4

3.6

3.8

4.0

4.2

4.4

bp
d

Cifar 10 Train/Test Bits per Dim
RealNVP
Emerging Conv.
PAC (s-curve)
PAC (raster)

Figure 4: Test and train loss for PAC flows vs other methods. We observe that using convolutions
improves on affine transformations and using pixel adaptive convolutions significantly improves on
regular convolutions. Test set values are shown in bold colors for each method.

Our results support our hypothesis that the power of coupling comes from the ability to use a different261

function to transform every element of the input. We see this because even though the emerging262

conv model applies a strictly more expressive transformer than the RealNVP model, both only have a263
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conditioned shift and scale parameter. Furthermore, when we add pixel adaptation to the emerging264

conv model (the PAC flow) we see a massive improvement in performance.265

5.3 Inversion266

We test the inversion speed of PAC flows by examining the maximum absolute difference between267

consective iterations during the reconstruction of 64 test set images. Fig.5 shows the results. We268

see that the Jacobi method (Eq.7) can efficiently invert autoregressive convolutions. The kernel269

and mask are computed on only the first iteration and every remaining iteration only requires270

evaluating the product in Eq.9 or Eq.10. In contrast to using forward/backward substitution which271

cost O((HWC)2), the Jacobi method is significantly more efficient.272
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Figure 5: Maximum absolute difference between consecutive iterations of the Jacobi method during
reconstructions for 64 test samples. The reported values are averaged over every flow layer in the s-
curve PAC flow. PAC flow is inverted in fewer than 60 iterations total as opposed to forward/backward
substitution which requires O(HWC) iterations.

6 Conclusion273

We introduced a new normalizing flow layer called PAC flow that uses invertible pixel adaptive274

convolutions. The method applies a different filter to different locations of an input image which275

makes it suited for normalizing flows where we have a restricted number of channel dimensions and276

for coupling, where we can parametrize the filters using an unconstrained neural network. PAC flows277

have a tractable log Jacobian determinant due to its implementation using the PLU decomposition and278

are efficiently inverted using the weighted Jacobi method. Our experiments indicated that PAC flow279

outperforms comparable invertible convolution models that do not use pixel adaptive convolutions280

and that the inversion algorithm converges quickly. A limitation of our model is that the filters it281

learns are not independent and are instead tied together through the feature parameter. This could282

potentially limit the flexibility of our model compared to standard convolutional neural networks283

that can use an arbitrary number of feature maps. Furthermore, by fixing the permutation matrix284

in our PLU decomposition to the identity matrix, we can only learn a subset of the space of linear285

transformations. In the future, we will investigate using the convolutional exponential Hoogeboom286

et al. [2020] in order to learn a wider class of transformations. Our method can potentially be used287

to improve deepfakes which could be used for nefarious purposes. Conversely, it could be used288

to to generate representations of health datasets such as brain and heart MRIs that are useful for289

downstream tasks.290
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1. For all authors...425

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s426

contributions and scope? [Yes] In the abstract we claimed that PAC flows can be427

inverted efficiently and can improve performance for invertible convolutions. Sec.5.3428

demonstrated quick inversion and sec.5.2 demonstrated the performance gain over429

invertible convolutions.430

(b) Did you describe the limitations of your work? [Yes] We discussed the limitations in431

the conclusion.432

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See the433

conclusion.434

(d) Have you read the ethics review guidelines and ensured that your paper conforms435

to them? [Yes] Much like other generative models, PAC flows could be put towards436

societal good, though its use for disease diagnosis, for instance. On the other hand, it437

may be used for deceptive purposes such as the generation of deepfakes.438

2. If you are including theoretical results...439

(a) Did you state the full set of assumptions of all theoretical results? [Yes] We clearly440

stated the convergence of Eq.7 depends on the assumption that A is triangular and441

α ∈ (0, 2).442

(b) Did you include complete proofs of all theoretical results? [Yes] We included a proof443

of the convergence of Eq.7 in Appendix A.444
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3. If you ran experiments...445

(a) Did you include the code, data, and instructions needed to reproduce the main experi-446

mental results (either in the supplemental material or as a URL)? [Yes] We included447

code in appendix B and C.4 and will upload our actual implementation as supplemen-448

tary material.449

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they450

were chosen)? [Yes] See Sec.5.1.451

(c) Did you report error bars (e.g., with respect to the random seed after running experi-452

ments multiple times)? [N/A]453

(d) Did you include the total amount of compute and the type of resources used (e.g., type454

of GPUs, internal cluster, or cloud provider)? [Yes] We say this in the beginning of455

Sec.5.456

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...457

(a) If your work uses existing assets, did you cite the creators? [Yes] See the beginning of458

Sec.5.459

(b) Did you mention the license of the assets? [N/A] The JAX is open source and the460

datasets we used are public.461

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]462

463

(d) Did you discuss whether and how consent was obtained from people whose data you’re464

using/curating? [N/A]465

(e) Did you discuss whether the data you are using/curating contains personally identifiable466

information or offensive content? [N/A]467

5. If you used crowdsourcing or conducted research with human subjects...468

(a) Did you include the full text of instructions given to participants and screenshots, if469

applicable? [N/A]470

(b) Did you describe any potential participant risks, with links to Institutional Review471

Board (IRB) approvals, if applicable? [N/A]472

(c) Did you include the estimated hourly wage paid to participants and the total amount473

spent on participant compensation? [N/A]474
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A Weighted Jacobi Method for Triangular Matrices475

Here we will show that the weighted Jacobi method converges globally to the solution x = A−1b476

when A is triangular.477

x(t+1) = x(t) − αdiag(A)−1(Ax(t) − b)

Proof. Let x∗ = A−1b be the solution to Ax = b. Let e(t) = x(t) − x∗ denote the error at the tth478

iteration. By Theorem 4.1 of Saad [2003], if there is a matrix G s.t. e(t+1) = Ge(t) and the spectral479

radius of G is less than 1, then the iterations will always converge. For the weighted Jacobi method,480

G = I − αdiag(A)−1A:481

e(t+1) = x(t+1) − x∗ (11)

= x(t) − αdiag(A)−1(Ax(t) − b)− x∗ (12)

= x(t) − αdiag(A)−1Ax(t) + αdiag(A)−1AA−1b︸ ︷︷ ︸
x∗

−x∗ (13)

= (I − αdiag(A)−1A)x(t) − (I − αdiag(A)−1A)x∗ (14)

= (I − αdiag(A)−1A)(x(t) − x∗) (15)

= (I − αdiag(A)−1A)e(t) (16)

ClearlyG is triangular becauseA is triangular. Also, each of its diagonal entries will be equal to 1−α.482

The eigenvalues of triangular matrices are equal to the diagonal entries, so all of the eigenvalues of G483

are 1− α. The spectral radius of G is equal to the maximum absolute value eigenvalue. Therefore,484

ρ(G) = |1− α| and will always be less than 1 if α ∈ (0, 2). Under these conditions, ρ(G) < 1, so485

the weighted Jacobi method will always converge for triangular matrices when α ∈ (0, 2).486

B NumPy Implementation of PAC Flows487

import numpy as np
import einops

def conditioner(x):
"""
Neural network with learnable parameters.
If x.shape == (H, W, C), then
conditioner(x).shape == (H, W, 2*C + F)
"""
raise NotImplementedError

def make_psi(filter_shape, pad, stride):
"""
This will depend on your backend.
JAX: jax.lax.conv_general_dilated_patches
PyTorch: torch.nn.Unfold
Tensorflow: tf.extract_image_patches

Should return function "patches" so that
patches(x).shape == (H, W, C, Kx, Ky)

If x.shape == (H, W), should return shape (H, W, Kx, Ky)
"""
raise NotImplementedError

def kernel(psi, f, s, l):
"""
Compute the pixel adaptive kernel.
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f.shape == (H, W, F)
s.shape == (H, W, C)
l.shape == (H, W, C)
"""
# Compute the difference between each feature vector
# within a patch from the center feature.
# f_diff.shape == (H, W, Kx, Ky)
f_diff = np.sum((psi(f) - f[...,None,None])**2, axis=-3)

# Broadcast s and l
s, l = s[...,None,None,:], l[...,None,None,:]

# Compute the kernel
k_i2c = np.exp(-0.5*l*f_diff[...,None])*s

# Rearrange the kernel so that it is consistent with psi
k_i2c = einops.rearrange(k_i2c, "... h w u v c -> ... h w c u v")
return k_i2c

def PAC(x, theta, kernel_size=5, order_type="s_curve"):
"""
Compute an invertible pixel adaptive convolution.
Asusmes that the unbatched input shapes are:
x,shape == (H, W, C)
theta.shape == (H, W, 2*C + F)
"""
H, W, C = x.shape[-3:]

# Assume that the filter size is odd so that it is
# easy to pad s.t. the center of the filter corresponds
# to the diagonal of the Jacobian
assert kernel_size%2 == 1
Kx, Ky = kernel_size, kernel_size
pad_x, pad_y = Kx//2, Ky//2
c_x, c_y = Kx//2, Ky//2

# Construct a raster or s_curve order
order = np.arange(1, 1 + H*W).reshape((H, W, 1))
if order_type == "s_curve":

order[::2] = order[::2,::-1]

# Split the parameters
f, s, l = theta[...,:-2*C], theta[...,-2*C:-C], theta[...,-C:]

# W is not learned with coupling
W = get_parameter("W", shape=(Kx, Ky, C, C))

# Construct the psi function. Assume that
# psi(x).shape == (H, W, C, Kx, Ky)
psi = make_psi(filter_shape=(Kx, Ky),

pad=((pad_x, pad_x), (pad_y, pad_y)),
stride=(1, 1))

# Extract the psi of the input and order
x_i2c, order_i2c = psi(x), psi(order)

# Get the autoregressive mask
order = np.arange(1, 1 + util.list_prod(order_shape)).reshape(order_shape)
mask = order[...,None,None] >= order_i2c
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# Compute the kernel
k_i2c = kernel(psi, f, s, l)

# Compute z = LUx
pattern = "...hwiuv,...hwouv,uvio->...hwo"
z = np.einsum(pattern, mask*x_i2c, k_i2c, np.triu(W))
z = np.einsum(pattern, ~mask*psi(z), k_i2c, W) + z

# Compute the diagonal of the transformation
diag = k_i2c[...,c_x,c_y]*np.diag(W[c_x,c_y])

# Compute the log Jacobian determinant
log_det = np.log(np.abs(diag)).sum(axis=(-1,-2,-3))
return z, log_det

C More Architecture Details488

C.1 Nonlinearity489

In our experiments we make use of a smooth approximation to the relu function with a non exponen-490

tially decaying tail:491

sp(x; γ) =
1

2
(x+

√
x2 + 4γ)

The default value of γ that we use is 0.5. We were first made aware of this function from theorem492

13 in Domke [2020] and found that it was a good fit for scaling parameters in normalizing flows,493

however it has recently been rediscovered by Barron [2021] who called it the "squareplus" function.494

We will denote it as sp(x; γ). We also note that a similar kind of approximation for leaky relu, called495

"sneaky relu", was introduced in Finzi et al..496

We can use squareplus to give us an approximation of the sigmoid function with the same nice tail497

properties by taking its derivative. We call this the "squaresigmoid" function498

ss(x; γ) =
d

dx
sp(x; γ)

=
1

2
(x+

x2√
x2 + 4γ

)

This immediately leads to an approximation of the swish Ramachandran et al. [2017] function,499

which we call "squareswish", as x ∗ ss(x; γ). We use this approximate swish as our neural network500

nonlinearities.501

C.2 Numerical stability502

Some of the parameters to flow layers must be positive. In order to have a neural network learn503

unconstrained parameters, we must pass the neural network outputs through a function, φ that ensures504

that the outputs are positive. The softplus and sigmoid function are common examples of this.505

However, one must be careful when using this to generate a parameter that is divided. For example,506

in RealNVP we learn a value to divided an input by:507

θ = NN(x2)

ŝ, b = θ

z =
x− b
φ(ŝ)

If ŝ is too negative, then φ(ŝ) can get close to 0, causing numerical stability issues. This can be the508

case with softplus and sigmoid because they have exponentially decaying negative tail. So instead we509

use the squareplus function for this task and find that it works well in practice.510
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During data dependent initialization, if we want sp(θ; γ) to be the standard deviation of a batch of511

inputs, we compute the standard deviation of our input, then set θ to be the inverse of the squareplus512

function:513

sp−1(x; γ) = x− γ

x
(17)

If θ is the output of a neural network and we want to initialize sp(θ; γ) to be 1, we simply use514

zero initialization for the neural network (so that θ is initialized to a value close to 0) and set the515

hyperparameter γ = 1.0 because sp(x; 1.0) passes through the point (0,1).516

C.3 Bounding the PAC kernel parameters517

The kernel parameters of PAC, f , σ2 and l only need to satisfy the constraint that σ2, l > 0. However,518

we found that only satisfying this constraint led to poor test set performance. One solution to this was519

to force f ∈ (−1, 1) and σ2, l ∈ (0, 1). We enforced this using the squaresigmoid function.520

C.4 Architecture code outline521

The following code is an outline of the architecture we used for our experiments.522

def gated_resblock(x, hidden_channel, aux=None):
channel_in = x.shape[-1]
gx = nonlinearity(x)
gx = Conv(x, hidden_channel, kernel=3, stride=1, weight_norm=True)
if aux is not None:

# This is used during dequantization to condition on x
aux = nonlinearity(aux)
aux = Conv(aux, hidden_channel, kernel=1, stride=1, weight_norm=True)
gx += aux

gx = nonlinearity(gx)
gx = dropout(gx, 0.2)
gx = Conv(x, 2*channel_in, kernel=1, stride=1, weight_norm=True)
a, b = split(gx, 2, axis=-1)
gx = a*sigmoid(b)
return gx

def conditioner(x, out_channel, n_res_blocks, hidden_channel, initial_channel, aux=None):
x = Conv(x, initial_channel, kernel=1, stride=1)
for i in range(n_blocks):

gx = gated_resblock(x, hidden_channel, aux=aux)
x += gx
x = layer_norm(x)

x = Conv(x, out_channel, kernel=1, stride=1)
return x

def affine(x, theta, bias=None, kind="pac", order="s_curve"):

if kind == "pac":
x, log_det = PAC(x, theta, kernel=5, order=order)

elif kind == "emerging":
conv_params, scale = theta
# Used same implementation as pac model, but without kernel
x, log_det1 = PAC(x, theta, kernel=5, order=order, pixel_adaptive=False)
x, log_det2 = ElementwiseScale(x, scale)
log_det = log_det1 + log_det2

elif kind == "realnvp":
x, log_det = ElementwiseScale(x, scale)

if bias is not None:
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# This differentiates the affine from linear layer
x += bias

return x, log_det

def transformer(x, theta, kind="pac", order="s_curve"):
linear1, bias, logistic_cdf_mix_theta, linear2 = theta

# Set to ensure models have same number of parameters
if kind == "pac":

n_mixtures = 5
elif kind == "emerging":

n_mixtures = 10
elif kind == "realnvp":

n_mixtures = 16

x, log_det1 = affine(x, linear1, bias=bias, kind=kind, order=order)
x, log_det2 = logistic_cdf_mixture_logit(x, logistic_cdf_mix_theta, n_mixtures=n_mixtures)
x, log_det3 = affine(x, linear2, bias=None, kind=kind, order=order)
x, log_det4 = SLogGate(x)
log_det = log_det1 + log_det2 + log_det3 + log_det4
return x, log_det

def main_flow(x, aux=None, checkerboard=True, kind="pac", order="s_curve", **cond_kwargs):
if checkerboard:

x = squeeze(x)

x1, x2 = split(x, 2, axis=-1)
theta = conditioner(x2, aux=aux, **cond_kwargs)
z1, log_det1 = transformer(x1, theta, kind=kind, order=order)
z = concatenate(z1, x2, axis=-1)

z, log_det2 = OneByOneConv(z, weight_norm=True)
z, log_det3 = ActNorm(z)
log_det = log_det1 + log_det2 + log_det3

if checkerboard:
z = unsqueeze(z)

return z, log_det

def fused_dequantization_padding(x, kind, order, padded_channel_size, feature_dim):

# Extract some useful info about x first
f_cond_kwargs = dict(out_channel=3,

hidden_channel=64,
initial_channel=32,
n_resnet_blocks=6,
aux=None)

f = conditioner(x, **f_cond_kwargs)

# Sample from q(z|x)
q_cond_kwargs = dict(out_channel=2*padded_channel_size + feature_dim,

hidden_channel=64,
initial_channel=32,
n_resnet_blocks=3,
aux=f)

noise = UnitGaussian.sample(shape=(H, W, padded_channel_size))
log_qzgx = 0.0
for i in range(4):

# Sample from the main flow (invert not shown above)
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kwargs = dict(aux=f, checkerboard=True, kind=kind, order=order, invert=True)
kwargs.update(q_cond_kwargs)
noise, llc = main_flow(noise, **kwargs)
log_qzgx += llc

dequant_noise, padding_noise = noise.split(axis=-1)

# Standard dequantization steps
dequant_noise, log_det_sigmoid = sigmoid(dequant_noise)
x += dequant_noise
x, log_det_scale = Scale(x, 256)
x, log_det_logit = logit(x)

# Pad
z = concatenate(x, padding_noise, axis=-1)
llc = -log_qzgx + log_det_sigmoid + log_det_scale + log_det_logit
return z, llc

def full_architecture(x, kind, order, padded_channel_size, feature_dim):
x, elbo = fused_dequantization_padding(x, kind, order, padded_channel_size, feature_dim)

condition_kwargs = dict(out_channel=2*padded_channel_size + feature_dim,
n_res_blocks=6,
hidden_channel=64,
initial_channel=32,
aux=None)

kwargs = condition_kwargs
kwargs.update(dict(kind=kind, order=order))

for i in range(3):
x, dlog_det = main_flow(x, checkerboard=True, **kwargs)
elbo += dlog_det

for i in range(3):
x, dlog_det = main_flow(x, checkerboard=False, **kwargs)
elbo += dlog_det

x = squeeze(x)
for i in range(3):

x, dlog_det = main_flow(x, checkerboard=True, **kwargs)
elbo += dlog_det

for i in range(3):
x, dlog_det = main_flow(x, checkerboard=False, **kwargs)
elbo += dlog_det

log_pz = UnitGaussianPrior(x)
elbo += log_pz
return x, elbo

def RealNVP(x):
return full_architecture(x,

kind="realnvp",
order=None,
padded_channel_size=6,
feature_dim=16)

def EmergingConv(x):
return full_architecture(x,

kind="emerging",
order="raster",
padded_channel_size=6,
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feature_dim=16)

def PAC_raster(x):
return full_architecture(x,

kind="pac",
order="raster",
padded_channel_size=6,
feature_dim=16)

def PAC_s_curve(x):
return full_architecture(x,

kind="pac",
order="s_curve",
padded_channel_size=6,
feature_dim=16)

D Samples523

Figure 6: Samples from PAC s-curve trained on CIFAR 10.
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Figure 7: Samples from PAC s-curve trained on ImageNet 32x32.

Figure 8: Samples from PAC s-curve trained on ImageNet 64x64.
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